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ir’a'dévoted‘to the application of the stocﬁaStic'prcceasithéorj;_

'.r3Intrbduc£ibh ;f:fl

' Inthe last two decades, much research effort has been

. 'in the general area of engineering mechanics and structural

‘:‘ehgineering for the purpose'of predictingvthe'thaﬁickatrﬁcruraiii,_‘yjf

‘iiperformancé with a better accuracy ana:of:aaaeaaing.thc'c§ar;rff.f,i
,v,all strgctﬁral safety With a better reliabiiity.by cohsidering
more realistic analytical models of loadfstructurc5ystems.“
‘Naming only a faw, pcssible applications cf this stcchaatic
approach includc‘ (a) analysis of panei vibrations of aircraft
and submarihes indﬁced by boundary layér turbulence, (b) aﬁaiysis
of ship oscillatidna caused by ocean,wares, particﬁiarly during»
_a'storm, (c) analysis cf aircraft response toigustv?ertical
velocitj, (d). response analysis ofvoff—shore structuresbtovwave
and wind forces, (e) statisticai strength analysis of éngineering
'materials, particulariy of modern compcsité materials, with
randomly distributed thermo-mechanical properties, (£) analysis
of the effect of randomness in geometrical configuration of and
mechanical constraint on a structural componeﬁt dce, for example,
to fabrication errors-on'thé vibration and buckling eigenvalues
and, (g) -study of raﬁdom surface roughness of bridge pavameht
and airport run-way fcr’the purposes of analyzing the vehicle and

aircraft vibration caused by the roughness and of stress analysis




viof dlfflcultlesvunselved that.must be everceue neforewthe y
bfZ:f;spnroaen becones“nore useful - Such problen aressbrnciuae
:fﬁf:ki)'v o : : : T
:_{izjr
(3)

-H(4j

vhaS'

the

'fstudy, however,‘the present state of art Stlll 1ee es a number

random response analy31s of hlghly nonllnear structures,
failure analysis of structures under random 1oad1ng,,"
énalysis of extremely comp lex sYstemsvénd;

random eigenvalue problems.

“The recent advent of high speed digital computers, however,

made it not only possible but also highly practical to apply

Monte Carlo techniques to a large variety of engineering

"problems. The present paper presents a technique of digital

.- simulation of multivariate and/or multidimensional Gaussian random

processes (homogeneous or nonhomogeneous) which can represent

physical processes germane to structural engineering. The paper

- also describes a method of digital simulation of envelope functions.

Such simulations are accomplished in terms of a sum of cosine

functions with random phase angles and used as the basic tool in

a general Monte Carlo method of solution to a wide class of

problems in structural engineering, particularly those mentioned

above.



tﬁ'l' spectral,densitY S, (@) in the'form'of_the'sumzbfpthé'CéSiﬁéf ”'

B funétiohs hés ékisted for some time [iipvv

A Background

>, simulation of a_Réﬁdomeroceés;

" ‘A basic representation of a homogeneous Gaussian (one

dimensional and one-variate) random process f, (x) with mean zero and

 .f(x) = /Q.kil Ak cos(wkx - Qk)» ‘~\g-_-._b»ﬁ,i:5‘%}‘-

‘where @k are random angles distributed uniformly betwéeh 0 and

2x and independent of Qj(k # 3), and

= [8° (o) dw]l® = (k - 3) b _ .(2Y)
" 1k % | e ,

oj

with
59 (@) =25, (@) e O
being the one-sided spectral density function (see Fig. 1).
For digital'simulation of a simple function f (%) bf‘f(x) and
therefore of £, (x), Eq. 1 is used with @k being replaced by
their réalized values mk; |
- N

f(x) =/2 T Ak cos(mkx - mk) (4)

. k=1 ‘ ‘
With the aid of Egs. 1 and 4, it is easy to show,thatvK. 1l is
ergodic at least up to the second moment.

Speakihg of'struéture—related applications, however, until

vBorgman [2] published a paper simulating ocean surface elevation



ﬁ.f;aswa ﬁultidimensional;processaessentiallyiin th,

;:attention had been pald to thlS representationLLn spit

1"'-_tjf',_'“;_;_}v;j_-f:substantial advantage over the standard method 1n which a’random

. process was digitally generated as output of an appropriate )

ﬁyil(analytical) filter subjected to a 51mulated white process :ﬂ?hef

h~fuse of this filtering technique, although limJted in 1ts practicalan

ﬂgapplications to a one—variate one—dimenSional process has dominated o

if';a large number of papers 1nvolv1ng Simulations of a random fd
process. _ v , : S
Practical digital_simulation of a'multidimensional processh
"‘has been‘madevpossible, as mentioned above, by Borgman [2] in.
principle through the preceding eXpression consistinguof_a.sumbf
- of cosines and hy»shinozuka t3]‘whose method reduces; invcase oft‘
.fone—variate one—dimensional situations to the usegof-the followingm

expression;

f(x) =o(Z)° T cos(nx - @) T )
N k k
k=1 : : _
where 'are as previously defined and wk are realized values

Px | v
~of random frequenc1es distributed according to the density
function g(w) = S, (w)/c with

f S, (w) dm - | - (6)

. Borgman [2] and Shinozuka [3] also investigated the digital

simulation of the multivariate (but one-dimensional) process,




J;the former maklng use of the fllter

1hf R(E) of f(x) converges tov R, (F) of f (x)

"»existvbetweenvthe spectral element S(aﬂ_&b'oﬁﬂf(k)fand SQ(QYA¢¥,

-_'.»,of £, (x).

_1n the more convenlent form of the sumro the cosine furictions

Reference [4] shows that the autocorrelatlon;functlon

1n.the form of l/N2

S‘;Nhﬂ @, The same trend in convergence can be shown [4] to '

It is 1nterest1ng to note that f(x) in Eq. 1 can be
1nterpreted as a canonical expansion of a Gauss1an process fo(x)
with mean zero and spectral density So(w). To,see'this, express,

£, (x) in the form of the spectral representation

o y RS |
£, (x) =[] e az(w) R )

where Z(m); called spectral process, is orthogonal in'the'sense

that the increments dZ(ml) and dz(wz) are uncorrelated when

@y # @, .

Employing the orthogonailcondition of Z(w), the auto-

~correlation function of £, (x) is found to be

-]

iw 2
R, (§) = E[f, (x) £, (x+£)] = [ e " E|dz (o) | (8)
where E indicates the expected value.
Assume that the spectral density function S, (w)  exists.

2 ’
Then Eldz (w) |” = s, (0) dw, and Eq. 8 is reduced to the well-

known Wiener-kKhintchine relationship. For the case when £, (x)



isv?ééleré;77;Beébméé*{4}f

%_.j_f

() = [ foos xdu(e) + sin axdv(e)]

£

v' _whéfe“U(w)'ahde(é)kfor:aﬁy‘wi§ Q‘ia?é ;wofmﬁ;ﬁéil§ §?t§§g;ﬁal;
::{ﬁ;é¥6éessQ§;iﬁéthﬁrééi éﬁdvﬁiﬁh bfﬁhoégﬁéili£;¥éﬁe;€§;{éﬁéﬁ?#ﬁ;g;
C Elave? = slav@1? = 83 () @
' , v i£ ingéinted.out ﬁhat if one défiheé: 'm:7
av (mk) _ 128 (0) bel? coss, =2 Ak cos 3
av(g)= 1255 (o) pal® sin s, =/2A_sind o
2'wh¢re m#,.&w ana @# are defiﬁed in Egs. 1'éﬁd 2, theh élltﬁe
- ,cbnditioné imposed>on U (w) - amd V(w) afe sétisfied, and Eq. 1
‘ié bééicaliy consistent Qith the spectral represenﬁation.
It is seeh from Eq. 9 that a homogeneous-process is addi-
- tively builﬁ up by orthogonal oscillations with random amplitudes.
A canonical expression of a real random process £, (x)
can be written in the form [5];
£, (x) = il a x}k € ay
where ak are ﬁncorrelated random variables with mean zero and 
vk(k) are real (deterministic) fupctions of x} a, are called
the coefficients qf the canonical expansion and v#(x) the

coordinate functions.



3one can show that

- .. where Dj'-is'the variance of a.;

fxpected values and us1ng the fact that o

 ‘ 'iijx)_=;§5‘éiaj:;}%¥i'f”

oy
P5 = E[ajl - (13)

b: " 'aAt this point, write £, (x) in Eq. 9 in the following

- approximate form;

N ' : a
. L el
2 {cosaw x dU(wk) v51nc%gcdv(mk)]

ftf(k)
’ k=1 k

N - S R
“='/2k§1 (A'k cos @, X cos Qk + Pﬁc sin cpkx’ sin ék)

N .
,/'?kz_jl A, cos (cn x - 8 ) S - (14)
This is an approximatiori to £, (x) ‘since the integration is
replaced by a summation involving a finite number (N) of terms.
The degfee of the approximation depehds an (a) whether the
cut-off frequency @, (see Fig. 1) is iarge enough and (b)
whether Aw in Eq. 2 1is small enaugh so that
kdw

2 . . 2 [-) . E
Ak = ‘[('k;l) " sl(w)‘dm = Sl(mk) Aw‘ | (15)



‘h:fiéﬁbaiid. XBeihd the éample"functiOn*Off’f(XL
: 3f?gﬂsame approxlmate nature when con51dered a

- Of f (X)

';:jlnterpreted as an (truncated) canonlcal expan51on of f (x)

J"vln the form of Eq. 11 1f aj and vj(x)‘fare deflned as

f(x) possesses the

Wlthln the context of thlS appr0x1matlon, Eq. 14'cah7be‘

a = /‘2 A, cos i., ’ : .v ) (x')b = cohs'cn,_'c "
23-1 " 3 3. 231 3 . A
(§=1,2,...,5) (16)

a . =/22, sind  , v (%) %siﬁw,x |
J J 23 o

In fact, the coordinate functions in Eq. 16 follow from

"BEq. 12 if the coefficients ak in Eq. 16 and £ (x) in the form

of Eq. 14 are used therein.’

It can then be shown [5] (again within the context of the
approxiﬁatioh mentioned above).that if these vk(x) defined in
Eq. 16 are used, then for any given nﬁmber of N and for the
particular selection of ak in Eq. 16, Egq. 14 gives the best
approximation to the random function £, (x) in the sense that,
among all poasihle series expansion of fo(x) having the same
number of terms, Ed. 14 minimizes the expeetation of the square
of the residual term at any value of' Xe

There is another constraint to be imposed upon Aw. This

constraint is due to the periodicity of the sample function E(x).




'Obv1ously, the perlod of f(x)

dependlng on the purpose of the'51mula_lonh

_chosen that T E)ls long enouqh for tha ',\'*L

' A 51gn1f1cant lmprovement ln the efflclency of dlgltal

ifeimulation has recently been suggested'by Yang [6]_wr1t1ng
CFx) =+ bo ReF(®)
Aﬂ-iovwhich» ReE%x) 'represents the real part of F(x)

iwt

g e S
Corw - s {osente Kl e

k=
. ~ig
is the flnlte complex Fourier transform of [°S°(mk)]% k
.w;th @ ahd Py »deflned in Egs. l and 2. The‘advantage of
Eq. 18 is suoh that therfunction‘ F(x) can'readily be:eoﬁputed
by‘épolying the fést Fourier transform (FFT)-algorithm, hence tiﬁ
avoiding.the time-consuming computation of a large number of
_cosine functions. | |
In the preceding discussion, the spacing Aw 'in‘the frequency
‘domainrhas been taken as constant. This, however, aoes not
necessarily have to be always observed.‘ It is possible and in
fact may even be adviseble to use variable spacings dependingvon
the extent of fluctuation of the spectral density to’optimize
the number of cosine terms in the summation in Eqg. 1; finer

spacings in those domains of frequency where the fluctuation of

the spectralvdehsity is more rapid and coarser spacings elsewhere.



’ﬁ*frperlod T

:'felvgthe s1mu1atlon through the _FFT technlque does not:appe rpt':

Jbe p0551ble.'

J?f;the envelope process v, (t) of a random processi_f (x)

. followrng the deflnltlon of the envelope process [7]

f of the 81mu1ated process

In the same reference [6], Yang also proposed to slmulate:

Vo (£) = 1€ 69 + ( ) 1 o an

~where f;(x) is the Hllbert transform of £, (x) and, in the

present case, can be written as
-]

%a (x) =_r [sin ot 4V (w) - eos ot dV(w)] ‘(20)

(-]
- It then follows that f;(x) can be‘simuiated as %(X);
o . N _ S A .
s EB(x) = /'2k:[.. Ak sin (w X - cpk) '» o 'v‘:(v2vl)‘

Hence, the envelope process V, (t) can be simulated as V(t);
X o 3
v(t) = [f (x) + £ (X)]% , ' (22)

As an e#ample, consider the response process vy, (t) of
single degree of freedom system to a Gaussian white noise

excitation x, (t) with the constant_spectral density S,;
(1] [ ] 2 v .
Yo (£) + 200, 9o (¥) + @ ¥, (8) =%, (). (23)

It is welllknoWn that the spectral density of ‘yo(t) is

. ‘ : S.\ ) .
S. (o) = — , (24)
: 2 222 o ~
Y ' (0)2 - ‘Doz) + 47 w,w

10



v Wlth the ald of Eqs 1, 21 and 22 a segment of sample-ispﬁan

'5? functlon y(t) of s1mu1ated process y(t) for yo(t)
Anthat of SLmulatlon V(t) of the envelope process V (t) ére tjr7°
';computed and shownkln Fig. 2.and J. Fig. 2 ;s for‘thecase‘

. where the damping coefficient g = 0;02 ana:hence tne pfocess

't.yo(t)' is narrow-bandu This fact is well demonstréted byvthe”'t
;'_smooth behavior ofvthe sample ’envelope; When the local

 maxima of the semple' envelope do not coincide With the local

vmakima (peaks) of the process, they reflect'the local minime

itronghs) of the simulated process° Fig. 3 ‘shows thesamplefunctionSOf
-.V(tlvtand ?(t) for ¢ = 0,5. 1In this case, the process | |
f,(t) is‘substantiaily wide-band and this fact is clearly seen

from the mnch wilder fluctuation of both simulated envelope and
‘simnlated process, although the simulated'envelope surprisingly

well reflects peaks and troughs of the simulated process e&en though

-the process .yo(t) is wide-band. In terms of simulation

» efficiency, the computer time will be significantly reduced if

one is interested in peak- and trough-values of the process and

if the process is narrow-band, since then the smooth nature of

the envelope function makes it possible to use much larger

interval between successive time instants at which the values of

11




The order

ftﬂé“ s’ithnlated ”pr'o'c'e"ss is éi}éiu'éted

'hthls 1nterval can be that of the apparent“perlo of -the process,

;;whlch obv1ously 1s much too 1arge for'51mulatlon of the process.

1tself

Agaln follow1ng Yang [6], wrlte :(t);'aéﬁ

,nand hence V(t) can also he 31mnlated through the FF& techﬁlqﬁé.fff'h°
It appears at thlS tlme that ‘the method of 31mulatlon vsng‘
n-consldered herein (Eq. 1) has a dlfflcultyyln achlevlng a "
fdreliahle eﬁaluation of the first passage.time distribntlon
. when the'threshold value is‘much‘larger than‘the standard‘dee
vlation of the process. Lyon's work [8] points to this fact‘
although this dlfflculty is by no wmeans unique to the proposed
'method. It is suggested however, that a further 1nvest;gatlon
be performed on this point. o | |
The Gaussian property of the simulated process (Eg. 1)
comes from the central limit theorem because it consists of a
sum of a large number of independent functions of time (see
pp. 182 -183 in [1]). Efficient simnlation, or straight forward
simulation if not efficient,of a non-Gaussian process appears
to be~an open problem at this time unless the process is restricted
to a certain class of processes such as the filtered Poisson
process., |
In the following sections, a method for digital simulation

of multidimensional and/or multivariate processes are briefly




']described. uHoweVer;”for”these"Cases

f}on the 1nterpretatlon as canonlcal expan51on7“the use ‘of -
ﬂ:FFT technlque in actual dlgltal computatlon the envelope
hfs1mu1atlon, the problem of the flrst excursron tlme the simu _;_Sr

lj,ff_’latlon of non—Gaus51an processes, the convergence of the auto—‘f

'2correlatlon functlon and the spectral dens1ty of the 51mulated
' process to the respectlve target values, etc., are mostly subjects;”'tfi

'.,of future studles.

13



3. Simulation of a Multidimensional Héﬁ geneous P

. The autocorrelation function of an n-dimensional homogeneous

:f‘;;reai'procésé"f;(gj defined byV >‘T:>'

L R@=ELE)EE)T

|

\

-}2}i@"is évéh in g' (symmetric with respect to thé‘origintOf'thé {': 
n-dimensional'spéce)'

R (€) =R, (<) @D
are space vectors and £ = x_ - gl is the

1 2 o T2

separation vector. Assume that the n-fold Fourier transform

where x. and x

of R, (r) exists. The spectral density function of £, (x) is

. then defined as
e e e
S, (@ =———— [ R, (g) ¢ = a (28)
. (231) - - - o

whére w 1is the frequency (wave number) vector and w e+ g is

~ the inner product of w and ¢ , ahd,,for,simplicity

N ® n-fold -
[ (yag = [.000%000 T () dede,...a5_

-0 -0 -0

“with n being the dimension of the vector g. It follows from

Eq. 27 that
-} _ ‘
j‘ R, () sin(w - €) dg = 0
o 2 ) ==
and, thereforé, from Eg. 28

S, @ =5, (o) o)



"and is real.

A€ can be shown [9] ‘that R, (E) lS nonnegatlve deflnlte:iﬂiivq"'

xe_and therefore lt has a nonnegatlve n~fold Fourler transform- f}:fe>/M

S, (e) > 0 U "[afff”_’f(31)‘f:
'Based on these properties bf"S;(g),‘a method of simulating
f, (x) 4is proposed in the followingﬁ
v';CQnsider an n-dimensional homogeneous process with mean
zero and spectral density function S, (@)  which is of insigni-

ficant magnitude outside the region defined by

o< @, WS W <@
.= - u.

and denote the interval vector by

: w, =W ., =W w .—w i
. ~N :
(Aa;l, Aa)z,.‘.';, Awn) =( 1; 1L , ,21;1 24 ,.“'_n_gﬁ__n_ﬂ,_ /) (32)
N 1 - 2 n

where usually ®, = -a_ . Then the process can be simulated by

the series
Nl NZ I\Tn : _:5
= saoe ’ L) A e ee
fix) =/2 = T z [so(wlk Oope 2er® ) dw o, Amn]

2k 1
= =] o 1 2 n
k=l k= k=1 |

' . k e
lkl 1t 2k,"2 " ° ke n o kgk, kn

15



v.vQ'

As'ln the one- dlmen51onal case, the dlgltal 51mu— s

- lation _E(g) of f(_) ‘can be achleved by u51ng Eq. 33 w1th 57;1f j;;?h

klkz...kn' being replaced by their reallzed va;ues wklkz---kh f‘

To avoid the lengthy expre551ons in the subsequent dlscu551on,

‘f(_) will be wrltten in the follow1ng compact form:

F@ =2 3 A(_>cos<_ sx+e) (B4
o k=1 S ’ ,

where

N=NN...N
- 12 n

A(g_)k) = [s, (Qk) AwlAmZ';'Awn]%: [s, (Qk) A_@]%- | (35)

- It is noted that if the symmetric condition of S, (w) is used,{

‘N in Eg. 33 can be reduced by one-half. Furthermore, if the

process is isotropic, N is reduced to E: . Fig. 4 illustrates

: 2
the significance of A(@k) for two-dimensional cases where,

however, Ak " is written for A(wlk?, mZk?);

‘It can be shown [4] that the ensemble average of f£f(x) is

zero, and the,autocorrelation‘function' R (E) of f (x), becomes

N . ’
2 o .
R() = £ A" (a) cos(a - g) (36)



',ff;obtains:"r_'fﬂhiv" :

£) da =

AYR(é) f 'S, (_) cos(w .

-
iﬁjf“where‘lt 1sbassumed Sq (_) '-o'fof'¢;é7m27aﬁa}gdgf§;.:“'"“
| ‘ThlS 1nd1cates that when the ensemble average 1scon51dered,‘lht
fthe srmulated process f@g) vpossesses-the target aotooorreiatlonbv
| Ro(g) and therefore the target speotral’dehSity“‘S l(‘<‘1>)”"vj s
It can also be shown [4] that the temporal (or spatlal) mean

< f(_) > 1is zero and the temporal autocorrelatlon

< £ (x) f(g + €) > Dbecomes

R¥ (_g_) =
| - . R
‘ R(g) = T A @k) cos (@, - » (38)
S k=1 — e
 Bs N‘; ®, Eq.i38 becomes
R* () = [ s, (@) cos (@ - E) do = R',, (g) .v T (39)

From Eqs. 36 and’38, it is seen that the process £(x) in
Eq. 33 is ergodic regardless of the size of N. This makes the
method directly applicable to a time domain analfsis in which the
ensemble average cantbe evaluated in terﬁs of the temporalv
average.

Note that the simulated process is Gaussian hy virtue of the

central limit theorem.

17



. 'process, consider a two-dimensional homogeneous Gaussian proces

_fAéféhféxaﬁpié_qf'dig;tal simulation of ‘a multidimensional

, f°(t.x) 'with meahfZérq_and»spectgal°deﬂéi£yﬁ

‘ KL lw]
S, (w,k) = . - ' .« =
e L 2 o 22 2 2 _
oo 2ns o (1t e )4/?~ ﬁ“(“.m?4'k )

’Whefe  t  énd  2 réﬁ#eseﬂf the:time‘aﬁayﬁhé%diéténcé fégéééﬁi?él§. ‘fif
‘Qand; correspondingly, ‘@ and k- the fréqdénéy.and ﬁﬂe'WaVéfvv L
-‘nﬁmbér,”:It is knowﬁ‘that sﬁéh pfécess A_ fo(t;x) ‘is'a‘satis;'v
~ factory model of é fluctuating part of wind velqcityvélong‘é‘_
straight line direétion x. In the wind study, héwevér, it is
customary to consider the Fourier tfansform S, (@, 8) .of ﬁhe‘
autocorrelation RQ(T,Q) = E[fo(t,x) fo(t+T,vx4-ﬁ)]' onif with
 respect to 1. 1In fact, £he‘form.of  S°(m,§) vconsistent W?thz L
" Eq. 40 is | " |
e ol _, solollel

So (03'5) = * . (41)
- 2 (14 c0))?? _ _-

a familiar form for a fluctuating part of wind velocity at the
reference altitude of 33 feet where L = 4000 ft., K = surface

drag coefficient, o = constant, <C = L/(21rU3

3

{ th being.
)A wit U33 eing

the mean wind velocity at the reference altitude. For U33 = 40 mph
@ = 0.02 ft - sec and K = 0.03, the sample functions f(t,g) of
£, (t,e) are computed and shown in Fig. 5 at §_£ 0, 50 and 200 ft.

One can easily see in this example that the correlation almost

' disappears as the separation ¢ increases to 200 ft..

18



“Consider a set of m - homogeneous Gaussian n-dimensional pr

cesses £ix) (3=1,2,......m) with mean zero and with the cros

-

  .spectra1'd9nsitykﬁatrixl S(m)"definedvby‘w l

[ spe a6

e s@ se e

® 0 8 ® 00 0 00 s 0PSO P S0 s e s

0 ' ° . o - .
ST () sz (@) ... S (w)
”:2Whe:e1 S;k(g) is the n~fold‘ Fourier transfofm:of”theAcfoés'
_ chrélation ng(S). R
K N . B . I3 — o _ X ‘ . .
,:Dge to.the factrﬁhaﬁ Rjk(g) = Rkj(vs)’ one obtains

o4

o Sh@ = 5@ e

. wheté the bar ihdiéateé the‘complex cqnjugéte,
The mafrik S(w) is therefore Hérmitian. As inAtﬁe case of
a one-dimensional multivariate process[10},1it can be shown [4]
that the matrix S o) :is also nonnegative definite. -
Suppose éne can find a matrix H(w) which possesses

n-dimensional Fourier transform and satisfies the equation

s(w) = H(w) H@T (e

where S° (w) is the specified target cross-spectral matrix and T

indicate the transpdse. Then 'fj(ﬁ) (§=1, 2;...,m) can be

19



. simulated by the following filtering technique [2, 11];

) Mg mlEdes

. -e

jk =

B () = L; Hy(e)e S e

\
\
. where hjk(z)'is the nfdimensional'Fourié:'trahéofrm_of ¥H. (o)
’ Jfand nkkg) is an’indepéndent n—diménsional nOrmélizéd:white'
noise component such that
}-:»[nj (x,0m (%)) = 6(x; - 52,)6jk-
- with

6 (x;mx,)) = 6(xyy-%,,)0 “‘12""‘22’*"#'"S (1 = Xp)

' It‘¢an be easily verified that the fj(z) (3 = l,..;§M);
as simulatedvby Eg. 45, satisfy Eq. 44 and thus represent the

target processes. . ' ‘ C -
To find the matrix H(w) in_ah‘efficient way, one can

assume that H(w) is a lower triangular matrix;

- ' : ’
0 L] L - 0
Hll(g) o .

H (o) H (@ . .. Hmm(g_sl

Substituting above into'Eq._44, solutions are obtained (see

Ref. 12 for similar derivation) as
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IQWhere D (m) 1s the k—th prlncipal minor - of S3(w

"'D belng defined as unlty, and

0/1,2, .00, k-1,1

S 1
1 2 oooolk-l k/
(m) Hk (_) ~ .
k k )
D (w) -
SR S kT L
vhere _Sll Sl2_° et Sl,k--l S1x
' o o o
o r1,2,... k1,3 _ S S e e o &« S S
s (1'2“_.]{ 1 k/, - 21 22 2,k-1 "2k

k-1,1 %%-1,2 * * *Sk-1,%-15%-1,%
o o o o

s e e = @ S ’ .
S]l sz . k=1 Sjk

is the determinant of a submatrix obtained by deleting all elements

excépt the (1,2,..;k-1,j)—th row and (1,2,...k~1,k)-th column
of SOQQ). | -

It is noted that the above décomposition is valid only
when thé matrix SQ(Q) is hérmitian and positive definite as
can be seen from Eq. 46. |

- Because the cross-spectral density matrix‘.So(@) is
known to be only nonnegative définité, special considération
o

is needed in those cases where S(w) has a zero principal

minor. For the discussion on this point, the reader is

~ referred to Ref. [4].
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.Re.ij(Q} = Re H (-w)

Im HJ (_) —~Im H (—w)
for jk> 'k, and

5 - 20
JJ(.‘B) Hoj (o) 2

from which 1t follows that hjk( x) 1is real. B

If ij(g) is written in polar form;

Hy (@) = lijcc_n)!el jk@, R )

. . then, due to Eq. 48, ~the argunont e (w) is anti—symmetric“
in Q , that is
= - — : 0)
ejk(_cx_)) e‘jk( w) _(5 )
with e (_) =0 .

Once H(w) _is computed using Egs. 46 and 47, then instead
of passing a white noise vector through filters, the process.
fj(g) can be simulated in terms of the following series

J
f.(x) = ¢ E lH (_ )'/2 Aw cos[w X+ 9 L_) + @ (51)
J- - 2y
m=1l /=1
where ’
<y

previously for n-dimensional processes and

A@, N, and Qmﬂ' are eSsentially the same as defined
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"g'”as 51mulated by Eq. 51 possess the target cross correlatlon1{7

'“-Ksjfunctlons and hence the target cross spectral den51ty, w1th Vg

”'?}¢respect to an ensemble average.

f (X) (j =1

"It can be shown [4] that the processes

4”For digital simulation of sample functions of fﬁ@g),"

Eq. 51 is used with ’émﬂ being replaced by their'realized‘valueSQr

23



'r5' tSimu1éti°n'OfuMﬁltidimensional Nonhomogeneous_ProceeEes

’?T?éiﬁﬁiationetof‘;o;etatiohat§”pr0cesses haVe‘been‘etuoied o
,Jdeallng mostly w1th earthquake ground motlon.ﬂaTﬁe eooﬁooﬁteatufetl
’ 7 of these studles is that a.nonstatlonaty étooese‘le stﬁalated &
””tyvmuitlplylng by an envelope function thevstatlohaty-orooess’i‘t
_generated either by fllterlng a whlte noise [13 14] or by a‘
serles of osc11latlons w1th random ftequenqy ana randomvphaee"
[15 16,17]. | | | e
The eff1c1ent method of 31mulatlon that hasbbeen proposed
for multidimensional homogeneous processes can be directly
:generalized to a nonhomogeneous process characterized by an
' evolutionary power speotrum~as introdﬁced by Prieetley [18,19];
it was eeen from eq 9‘that a homogeneous process is addi—
tively built up by orthogonal oscillations with raodom amplitudes;
- This concept of orthogonal components can be extended to that of |
‘the evolutionary process f;(x)' expressed as |

@®

£ (x) = [ Blx,0)[cos wxdU(w) + sin wxdV (w)] (53)

[}

where B(x,w) is a dete;ministic modulatiog function characteri;ing

the "nonhomogeneitf" of the process, and U(m)‘ and V(w) are the

same as defined in Eq.?l_O° | | |
Using the orthogonal}eonditiooe of U(@) and V(w), the mean

square of £2 (x) 'is found to be
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vhere S lua)l =B na) Sy .
”VV”pbwér'spéctral'dénsity function.

ﬂ“fkitfijotAthevdetailed discussiOn'ahd_tﬂe;es#imétidn'6ff£hé5

: ¢£‘§vo1utionary power spéctrﬁm; the‘feadéts éﬁewréféffed”tb Réf$;{18 

and 19.-

The direct generalization of he_aboverdiscussibh to n-dimen- -

f §iQh§1.process‘is obvidus. .Thué; if>a féél #oﬁhomogénéousvprocessk”
?hasién evolutiénary-power spectfal‘déﬁéity fﬁnéfioh,'fﬁevproééss 
-;f;(g).~éaﬁ‘be simulétedtby | | I’ | -
ot () = /2v§ 82 (x,0 ) S(a )zs@fééés( ;‘x+>§>5 (55)

e — T S -k '— '@k— k | -
'ﬁﬁéfe“ﬁ(g,g)t isvﬁhé n—dimenéional’méduiatiﬁg fuﬁétioﬁ‘and the
rémaihingvnotaﬁioné ére the same as4in the case of a hombéeneous.
process given by Eq.v33.b itvcan be.shown thét'the‘simﬁlated process
fe(g) possesses the target evolutiona;y powerxspectrum as

N - =, o H

| Note thatiin a particulaf casevwhen B(x,w) = B(x), then

f;(;) can be bbtained by multiplying a homogeneous-process
simulated from S, (w) by the spatial envelope fﬁnctién B(x).

A more detailed study with numerical examples on this method

of simulation for nonhomogeneous Gaussian process with .an evolu-

tionary power specﬁra} density has been made by Yang [61.
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In the following section, |

fp;déeS§7With:an"évblufibnéry power ‘spectral density:is referre

- to.as Gaussian evolutionary process for




Hké:.

fMonte'Caflo Solution of Structural Dy

The”oreoed;ngﬂmethod of.dlgltal generation of sample
funotlons of a Gausslah.orocese:cahrbe'used ‘or the Monte
"»tCarlo solutlon of the follow1ng sttoctural‘ptoblems;hhlti
HHJls p01nted out parenthetlcally that by addlng a constant
' value m to the sample functlons f(t x) desctlbed lnvthe.
precedlng sectlons, one can generate sample fﬁnctlons ofnl“tv'%”"””

}the 51mu1ated process f(t x) + m assoc1ated Wlth |

fo(t,g) +m. Note that the mean value of f (t x) + m

‘is no longer zero but it is equal'to m.

‘(a) The method can be used in the response analysis
- of a nonlinear structure under random loading if such loading
- can be idealized as Gaussian homogeneous or Gaussian evo-
lutionary process with constantbmean values. 1In particular,
if the modes uk(z) of the corresponding linear structures
| . -
| B S ‘
} are known, the solution 1y, (t,x) 1is in approximation ex-
| .
| panded into a finite series.
| _ ; K : »
| Yo (t,x) = T q (t) u (x) (56)
| ’ k=1 v :
When'Eq. 56 is substituted into the governing (nonlinear
partlal) differential equation(s) of motlon, one can usually

get a set of 51mu1taneous nonlinear butordlnary dlfferentlal

equations involving the generalized forces of the
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‘ 1nd1cates an approprlate domaln of 1ntegratlon._uSample

‘ functlons F (t) can then be dlgltally generated from hﬂu

following form

QF(t) f uk(_) f (t X),dx

where _fo(t,g) is the random excitation process:aﬁdv'b.

Equatlon 57 w1th £, (t x) replaced by f(t x)

It goes without saying that ‘E(t,z) + m - has to be used

"in place of E(t,x) if the excitation process has a non -

zero constant mean value since the simple superp051t10n of

_solutlons does not apply in this case because of nonllnearlty.>«

The modes uk(z).often take the form of sinusoidal

- or hyperbolic functions or their combinations. Therefore,

the integration in Eq. 58 can usually be carried out in

closed form since f£(t,x) is given as a sum of cosine

functions. This is one of the significant advantages of

the present method of simulation over other existing methods.

In fact, if the domain of integration D bfepresents a

two or three dimensional space, the numerical integration

of Eq. 58 will usually become an insurmountable obstacle.

Another advantage is that the present method does not

require the nonlinearity to be small or moderate, a condition

28



“whlch has to be 1mposed for standard 11near1zat1 n

'“iturbatlon technlques._H“’H”‘"

'~0nCe'the sample>functionskfF‘(t)i are evaluated from

»Avq 58 then the sample functlons qk(t) of q (t) flcanvhe:v
dfnumerlcally evaluated from the (51multaneous) nonllnear R
'but”ordlnary»dlfferentlal eduatlons mentloned aboueu(replac1ng'ga;'(5
bvof course F (t) by F (t) thereln) | fhe exnerlence shows
»that thls phase of numerlcal work is not a serloushproblem; ‘(

_Flnally, the sample functlon y(t x) of the solutlon

yo(t X) can be obtained from Eq. .56 w1th qk(t) replaced

by qk(t). The temporal average of y (t X) over a suffi-

ciently long period of time will produce the mean square :

response in the Monte Carlo sense if the processes involved

7, are\ergodic. Otherwise, the ensemble average has to be

considered._ _
Reference [20] represents a typical example of such
analysis. 'A segment of a sample function of the tip deflection
U(O,t) of a vertical pile of uniform cross-section in
deep‘water (Fig.r6) having nonlinear drag effect-and sub-

jected to unidirectional wind-induced waves is shown in

Fig. 7, where a segment of a sample function of the response

“of the corresponding linear pile (without drag term) is

also shown for comparison.f In this study, the excitation

is due to waves under fully developed sea conditions with
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fmean windﬂvelocity iV ;forfwhloh-thezPlerson» Moskowitz

vfspectrum S°(w) forrthe:oceanésnrface_elevat;on hasﬂbeenﬂ

2
w

| where' 8 10 x 10 . B = o. 74 and S g/V w:l.th
"g,é acceleratlon due to grav1ty and V = mean w1nd veloc1ty.; ~'
The appllcatlon of this type of Monte Carlo approach

|
|
|
|
f5‘r. ‘ ﬂhas also been made to other nonllnear structural response
_analys1s [3,4,21,22,23].

v(bj The nethod can be applied toithe.failure ahal?sis;
.- of abstrnctdre»with spatiaily randomfvariation of strength
>:¢~' i::anddother_nateriai properties,“'In this_case,.sample struc-

tures’are generated by digitally generating such spatial
variations'of strength and other naterial properties.»
When correlated spatial variations are observed on more
than one materiai property (e.g. Young's modulus and
density), usually a multidimensional multivariate process
has to be generated with the aid of the method described
in Section 4.

Applying to each of these sample structures a sample

stress history of a random stress process, the fatigue

g life of a sample structure can be computed under the
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assumption of a certain fatigue failure mechanism

{ ?§tétiétiéaifVériéEidﬁ 6f thé“fatigue§1ifefthusféomputédé

"*“ffféstébiiéhés°ifs;émpificéljaiétribﬁtidﬁ"under»the:??hdbm;

Sfress process inAthg Mpﬁte Caflo_éeﬁéé;  iﬁi§ié§p¥§ééﬁf?;h
| was successfully taken in Ref. [24]. A similar problem in
‘théh thé'empifiéél-distribu£i§n 6f Ehé s£§£i§ f$i1ﬁ#é% ; w?
ioad is toiﬁe foﬁﬁd fbr»a concretevstfucﬁuré Qith>s§é£iéij_ 

stréhgth variation is treated in detail in Réf. [25].

. (c)' Thé method can be eﬁplo&ed efféé£i§e1§ ﬁh;n:£he‘
’structural system to be analyized is cémplex‘éven thoﬁgh “ 
it involveé.neither nonlineérity nor‘réhddmivariatioh of -
. material properties. The mean square responses (displace-
_meﬁt,’shear force and bending moment)sof a lérge fioatingb
; o plate fo wind—inducea random ocean-waves'ére computéa in
Ref. [26] taking the temporal aQerages §f sémple respohse'
§ functioné as in Ref. [20]. The énélysié is essentially
numérical since sample functiéns of the wind-induced ocean-
surface elevation are digitally generated and the corres-

ponding response functions are numerically obtained. This

was done because the ocean~structure system considered was

kind is the study of the dynamic interaction between moving

vehicles ahd_a bridge'with random pévement surface rough-

too complex to solve analytically. Another example of this
31



57;roughness is dlgltally s1mulated“for numerlca

'ffanaly31s.

h_-complex when its materlal propertles are spatlally random

;’-f,hés;s” [271. I'n this pr'oble‘m“ the'_random*-p‘év"einé‘nt surface

~ In some problems of mechanics;’a Structure is'considered.

?The wave propagatlon through a random medlum 1s one of these i

problems.- In Ref. [28], the stress wave propagatlon through E

“a flnlte cyllnder w1th random mater1al propertles is’ treated
under the condition that the one end of the cylinder is acted“s

" upon by an impact load and the other end is free. eAbset

of one hundred samples of correlated random material properties

(Young's modulus and density).are generated thui_producing

one hundred sample cylinders. The finite elementhmethod,is oy

applied for the stress analysis to compute maximum stress

 intensity in each of these cylinders due to the impact. an

empirical distribution of the maximum stress intensity is

then established in the Monte Carlo sense.

(a) :Finally, the method is often useful when the

problem is to determine eigenvalues (frequencies and buckling

loads) of the structure with random material properties. As

in the case of the wave propagation problems, sample struc-

tures are generated and the statistical distribution of

eigenvalues of these structures are treated as the empir -
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In spite of the recent remarkable advance in the area of stochastic
mechanics, the present state of art still leaves a number of difficulties
unsolved that must be overcome before the approach becomes more useful.
Such problem areas include (1) random response analysis of highly non-
linear structures, (2) failure analysis of structures under random
loading, (3) analysis of extremely complex systems and, (4) random
eigenvalue problems.

The recent advent of high speed digital computers, however, has made it
not only possible but also highly practical to apply the Monte Carlo
techniques to a large variety of engineering problems. The present
paper presents a technique of digital simulation of multivariate and/or
multidimensional Gaussian random processes (homogeneous or nonhomogeneous

DD|FN°oR\rM1473 (PAGE 1} S " Unclassified

G AIAL BAS ~ant T . L o Qacurity Clacsificantion

y
which can represent physical processes germane to structural engineeringd
|The paper also describes a method of digital simulation of envelope :
functions. Such simulations are accomplished in terms of a sum of cosine
functlons with random phase.angles and used as the basic tool in a
general Monte Carlo method of solution to a wide class of problems in
structural englneerlng, partlcularly those mentloned above.
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